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Mossin’s Demand Model as Starting Point

Mossin, J. (1968). Aspects of Rational Insurance Purchasing. Journal of Political 
Economy, 76, 533-568  Full coverage is optimal iff premium is actuarially fair
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Mossin’s Demand Model as Starting Point

Mossin (1968) (default-free setting)
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Modified Demand Model: The Case of Non-Performance

Mossin (1968) (default-free setting)
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Doherty N., Schlesinger H. (1990). Rational Insurance Purchasing: 
Consideration of Contract Nonperformance. Quarterly Journal of Economics, 
105, 243-253  Given default risk, over- or under-insurance may be optimal 
even though the premium is actuarially fair
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Modified Demand Model: The Case of Non-Performance

Mossin (1968) (default-free setting)

Doherty & Schlesinger (1990)
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Modified Demand Model: The Case of Non-Performance

Mossin (1968) (default-free setting)

Doherty & Schlesinger (1990)
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Mahul O., Wright B. D. (2007). Optimal Coverage for Incompletely 
Reliable Insurance, Economic Letters 95, 456-461  Optimality of 
under- or over-insurance depends on size of recovery rate 
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Modified Demand Model: The Case of Non-Performance

Mossin (1968) (default-free setting)

Doherty & Schlesinger (1990)
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Mahul O., Wright B. D. (2007). Optimal Coverage for Incompletely 
Reliable Insurance, Economic Letters 95, 456-461  Optimality of 
under- or over-insurance depends on size of recovery rate 

Optimal insurance demand under the risk of contract 
nonperformance, if default risk can be diversified? 

 multiple co-insurance as diversification measure
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Our Model Framework

Mossin (1968) (default-free setting)

Our model framework

ூ ூ ூ

ூ ூ ூ ࡰ

co-insurers: each co-insurer holds 
ଵ

௡
in premium and losses  

஽
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• is the random number of failed insurers 

•
ଵିఏ

ఏ

ଵିఏ

ఏ
is the joint default correlation factor

• As approaches a binomial distribution (independent defaults)

ி,௡ ூ ூ ூ

ூ is our decision 
variable: 

coverage rate of 
co-insurance 

policy 

Doherty & Schlesinger (1990)
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Remarks on The Model: Probability Weights, Utility and 
Premium Principle

௞,௡
௞ଵ

଴
௡ି௞

Probability of k failing co-insurers (given a policy with n co-insurers)

( is the density of a Beta distribution with parameters 
ଵିఏ
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ଵିఏ
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௡௢ ௟௢௦௦ ௞,௡ ௞,௡

௡

௞ୀ଴

Policyholder’s utility (is maximized with respect to ூ) 
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Remarks on The Model: Probability Weights, Utility and 
Premium Principle

௞,௡
௞ଵ

଴
௡ି௞

Probability of k failing co-insurers (given a policy with n co-insurers)

( is the density of a Beta distribution with parameters 
ଵିఏ

ఏ
and 

ଵିఏ

ఏ
)

௡௢ ௟௢௦௦ ௞,௡ ௞,௡

௡

௞ୀ଴

Policyholder’s utility (is maximized with respect to ூ) 

Assumed premium principle: Expected Payoff x Proportional Cost Loading

ூ ூ ூ ூ

ூ ூ ூ
Independent 
of and !

Each insurer receives 
ଵ

௡ ூ ூ as becomes large: fixed running costs?
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Effect of Diversification on Optimal Demand

• Assumed the insurer can increase the number of co-insurers from n to n+1 
Natural question: Is it optimal to increase or to decrease insurance coverage?

• First intuition: Given two policies, it seems to be nearby that it is optimal to take up 
more of the policy that provides higher utility.
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Effect of Diversification on Optimal Demand

• Assumed the insurer can increase the number of co-insurers from n to n+1 
Natural question: Is it optimal to increase or to decrease insurance coverage?

• First intuition: Given two policies, it seems to be nearby that it is optimal to take up 
more of the policy that provides higher utility. But:

Numeric Example:

Initial wealth 1.5

Loss prob. p 5.0 %

Loss size l 1.0

Default prob. q 1.0 %

Correlation 15 %

Cost loading ூ 0.0
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Monotonicity Criterion 

Let ூ,௡
∗ be the optimal insurance demand for co-insurers and set 

௡
∗

ூ,௡
∗

ூ,௡
∗

ூ,௡
∗

Then, ூ,௡ାଵ
∗

ூ,௡
∗ holds true, if 

࢒ି࢝

࢔࢝
∗ ࢞ ࢔

∗ for all 

where ᇱᇱᇱ ᇱᇱ is the policyholder’s measure of relative prudence.

Possible cases (heuristically)

(1) Low degree of prudence  is fulfilled  optimal coverage non-decreasing

(2) High degree of prudence 

& high recovery rate  is fulfilled  optimal coverage non-increasing

& low recovery rate  neither nor is fulfilled  unambiguous monoton.
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Monotonicity Criterion: Influence of Prudence 

Numeric Example:

Initial wealth 1.5

Loss prob. p 5.0 %

Loss size l 1.0

Default prob. q 1.0 %

Correlation 15 %

Cost loading ூ 0.0

High prudence 
High degree of 
over-insurance

Low prudence 
 Less over-
insurance

• Assumed the insurer can increase the number of co-insurers from n to n+1 
Natural question: Is it optimal to increase or to decrease insurance coverage?

• First intuition: Given two policies, it seems to be nearby that it is optimal to take up 
more of the policy that provides higher utility. 
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Further Results

(1) Analogous result for default correlation: Let ૚ ૛

૚ −
࢒ି࢝

࢔࢝
∗ ࢞

ࣁ ࢔࢝
∗ ࢞ ≤ ≥ ૛, for all ࢞ ∈ ૙, ૚ , ⟹ ࢔,ࡵࢻ

∗ ૚ࣂ ≥ ≤ ࢔,ࡵࢻ
∗ ૛ࣂ

A rising default correlation thus (rather) results in a

• decreased coverage, when policyholder is low-prudent

• increased coverage, when policyholder is high-prudent and recovery rate is high

(2) Implication for the single-insurer policy

૚ −
࢒ି࢝

૚࢝
∗ ࢞

ࣁ ૚࢝
∗ ࢞ ≤ ≥ ૛, for all ࢞ ∈ ૙, ૚ , ⟹ ૚,ࡵࢻ

∗ ≤ ≥  
ࢌି࢚࢒࢛ࢇࢌࢋࢊ ࢇ ࢔࢏ ࢊ࢔ࢇ࢓ࢋࢊ ࢒ࢇ࢓࢏࢚࢖ࡻ ࢍ࢔࢏࢚࢚ࢋ࢙ 

૚ିࢗ(૚ି࢘)

• High prudence  (Rather) less coverage than “benchmark”

• Low prudence and high recovery rate  (Rather) more coverage than “benchmark”
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Thank You

Lukas Reichel

Institute of Insurance Economics
University of St. Gallen
Tannenstrasse 19
9000 St. Gallen
Switzerland

lukas.reichel@unisg.ch


