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Observation I: Population aging

UN data (2012): Percentage aged 60+ years, 2012/2050 forecast
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Observation II: Patterns in death cause intensities

Australian mortality rates due to different death causes show
significant patterns (1987–2011), e.g., mental and behavioural
disorders (left) and circulatory diseases (right).
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Observation III: Longevity risk

When applied to annuities, death probabilities should be reduced
and trends should be considered to account for longevity. DAV:

Mortality trends, e.g. Lee–Carter model

∼ 7% risk margin for statistical fluctuation

10% risk margin for parameter risk, structural differences

15% risk margin for selection risk

UK, projected life expectancy at birth for males based on period life tables.

Office of National Statistics
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Goal

Develop a model which derives loss distributions of annuity
portfolios over one period which

takes into account most risks w.r.t. longevity,

accounts for changes in rates of different death causes,

accounts for dependence between policyholders,

has potentially short execution times (not Monte Carlo),

can be calibrated with available data.

Collective risk model extended CreditRisk+ (see Schmock
(2016), short ECRP) is able to cover all those attributes, if

default is treated as death .

J. Hirz, U. Schmock und P. V. Shevchenko Conditional Risk Measurement and Risk Aggregation 6



Introduction The model based on ECRP Estimation Real world example Further applications References

1 Introduction

2 The model based on extended CreditRisk+ (ECRP)
Notation and setup
Annuity model using ECRP

3 Estimation
Estimation approaches
Risks: Back to the introduction

4 Real world example
Estimation results
Portfolio applications

5 Further applications

J. Hirz, U. Schmock und P. V. Shevchenko Conditional Risk Measurement and Risk Aggregation 7



Introduction The model based on ECRP Estimation Real world example Further applications References

Notation and setup

Policyholders 1, . . . ,m.

N0-valued death indicators N1, . . . ,Nm where {Ni = 0}
indicates ‘no death’.

N0-valued independent payments (annuity payments,
premiums, discounted actuarial reserve, etc.) X1, . . . ,Xm to or
from policyholders given survival and corresponding payments
Y1, . . . ,Ym which need not be paid in case of death.

Total portfolio loss

For i.i.d. copies {Yi ,j}j∈N of Yi , for i ∈ {1, . . . ,m}, derive

L :=
m∑
i=1

Xi −
m∑
i=1

Ni∑
j=1

Yi ,j .
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Death indicator

Which assumptions should be satisfied by death indicators Ni in

S :=
m∑
i=1

Ni∑
j=1

Yi ,j ?

In reality, (Ni ) are Bernoulli distributed: just Monte Carlo.

If (Ni ) are independently Poisson: Panjer recursion.

If (Ni ) are compound Poisson distributed: iterated Panjer
recursion as in (extended) CreditRisk+.
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Multiple deaths are not a major issue

Multiple deaths of a single policyholder can occur when using
(compound) Poisson distributed deaths, but:

Since annual death probabilities are small for most ages,
multiple deaths are unlikely.

Multiple deaths are not a major issue for longevity risk
modelling.

Approximations using Poisson sums are justified by Poisson
approximation, cf. Barbour, Holst and Janson (1992).

With proper scaling, we get accurate results.
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Annuity model using extended CreditRisk+

Annuity model using extended CreditRisk+

For all policyholders i ∈ {1, . . . ,m} we assume the following:

One-period death probabilities q1, . . . , qm.

Risk factors Λ1, . . . ,ΛK are independent and have gamma
distributions with mean one and variances σ21, . . . , σ

2
K .

Death indicators are split up Ni = Ni ,0 + Ni ,1 + · · ·+ Ni ,K due
to different risk factors (death causes) with corresponding
weights wi ,0, . . . ,wi ,K ≥ 0 such that wi ,0 + · · ·+ wi ,K = 1.

L(Ni ,0) = Poisson(qiwi ,0).

L(Ni ,k |Λ1, . . . ,ΛK )
a.s.
= L(Ni ,k |Λk)

a.s.
= Poisson(qiwi ,k Λk).

Suitable (conditional) independence assumptions on (Ni ,k).
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Interpretation and comments on our annuity model

Risk factors Λ1, . . . ,ΛK represent underlying causes of death
such as neoplasms, cardiovascular diseases or idiosyncratic
components. Variation in risk factors represents unexpected
events such as better medication, epidemics, etc.

For example, a low realisation of the risk factor for neoplasms
Λk reduces the Poisson intensity in Poisson(qiwi,k Λk) for all i .

The weights wi ,k indicate how vulnerable policyholder i is to
risk factor Λk .

Our model can be generalised to losses Yi ,k depending on
death cause k .

Certain dependence structures for risk factors can be assumed,
see Rudolph and Schmock (2016).
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Is CreditRisk+ faster than Monte Carlo? Yes it is!

Policyholders: m = 10 000
Death probability: q1 = · · · = qm = 0.015
Losses: Y1, . . . ,Ym = 1

If Ni is Bernoulli, then S is binomial with (10 000, 0.015). Similar
total variations w.r.t. this binomial distribution yield the following
system times in ‘R’:
- Monte Carlo: 21.6 seconds
- (Extended) CreditRisk+: 0.01 seconds
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Available data

Historical data of annual number of deaths na,g ,k(t) ∈ N0

categorised by age a ∈ {1, . . . ,A}, gender g ∈ {f,m} and
death cause k ∈ {0, . . . ,K} for years t ∈ {1, . . . ,T}.
For Australia/Austria: Long-term data for 18 age groups,
both genders with 19 death causes available (ICD-9/10).

Corresponding historical population counts ma,g (t).

Data and model linkage

na,g,k(t) corresponds to a realisation of the random variable

Na,g ,k(t) :=

ma,g (t)∑
i=1

Ni ,k(t) ,
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Simplifying assumptions for consistent estimation

Additionally we assume the following:

Weights and death probabilities are equal within each age
category and gender.

Death probabilities in year t with year of birth za,g take the
form

qa,g (t) := FLap
(
αa,g + βa,g Tζa,g ,ηa,g (t) + κza,g

)
,

[FLap(x) ≈ exp(−x)/2 and Tζ,η(t) ≈ t] as well as weights

wa,g ,k(t) :=
exp

(
ua,g ,k + va,g ,k Tφk ,ψk

(t)
)∑K

j=0 exp
(
ua,g ,j + va,g ,j Tφj ,ψj

(t)
) .

Risk factor variances σ21, . . . , σ
2
K are constant over time.

Random variables are constant over time.
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Estimation procedures: possible approaches

Matching of moments: Easy to calculate and reasonably
accurate.

Maximum likelihood (MLE): ML-function is given explicitly
but deterministic numerical optimisation is impossible (∼360
parameters in example below).

Maximum a posteriori (MAP): Similar as MLE where risk
factors are not integrated out. Risk factor realisations (stress
testing) and handy approximations can be derived.

Markov chain Monte Carlo: Based on MLE or MAP,
switching to a Bayesian setting, parameters can be estimated
accurately. Samples from posterior densities are drawn.
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Risks considered in our model when applied to a portfolio
of life insurance contracts

Mortality trends: Via trends in death probabilities & weights.

Statistical fluctuation: Via risk aggregation in our model.

Random changes in death causes: Via stochastic risk factors.

Parameter risk: Via MCMC & sampled posterior distribution.

Structural differences and selection risk: Possible if portfolio
data available.
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Real world example: Setup

Australian death and population data

Periods t ∈ {1987, . . . , 2011}.
Eight age categories 50–54 years,. . . , 80–84 years and 85+
for each gender.

Ten non-idiosyncratic risk factors (death causes) Λ1, . . . ,Λ10.

In this setting optimisation over 362 parameters is required.

Using the extended CreditRisk+ setup with trends for death
probabilities and weights, we estimate the model via matching of
moments and MCMC with 40 000 samples.
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Real world example: MCMC density histograms

MCMC chains (random walk Metropolis–Hastings within Gibbs)
for variance σ21 of risk factor for infectious and parasitic diseases
(left) as well as for parameter α2,f (right).
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Real world example: Risk factor realisations
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A massive increase in mental and behavioural disorders

Leading death causes for Australia and Austria.

Australia Austria
2011 2041 2011 2041

male, 85+ years

1. circ. (40%) neopl. (24%) circ. (59%) circ. (46%)
2. neopl. (22%) ment. (23%) neopl. (17%) neopl. (10%)
3. resp. (12%) circ. (19%) resp. (08%) ment. (10%)

female, 85+ years

1. circ. (44%) ment. (34%) circ. (67%) circ. (51%)
2. neopl. (13%) circ. (17%) neopl. (11%) ment. (12%)
3. ment. (10%) neopl. (12%) resp. (05%) neopl. (09%)

90% quantile range: 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15
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Real world example: A simple portfolio

Australian data with the same setup as before.

Each age category and gender contains 10 policyholders with
annual annuities 11, . . . , 20.

Derive loss distribution L =
∑m

i=1 Xi −
∑m

i=1

∑Ni (T+1)
j=1 Xi ,j with

extended CreditRisk+ where Xi ,j ∼ Xi .
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Real world example: Parameter uncertainty

MCMC yields approximations for distributions of quantiles of L,
i.e., we can quantify parameter risk.
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Real world example: Scenario analysis

If deaths due to neoplasms decrease by 25% over all ages, we
can estimate risk factor realisation λneo = 0.7991 and get the
distribution of L under this scenario.
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Forecasting death rates with our model vs. Lee–Carter

Using our annuity model, we can forecast death rates via setting
Yi = 1. Comparing estimated bounds with bounds obtained by the
Lee–Carter model for females aged 55 to 59 gives:
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Forecasting death rates and parameter uncertainty

Parameter uncertainty is given by shaded areas (90 percent
confidence bands) of 5%- and 95% quantiles:
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Life tables via Markov chain Monte Carlo: Australia I

We use Australian death data for the period {1971, . . . , 2013}.
Our model with just idiosyncratic risk is able to forecast death
probabilities via qa,g (t) = FLap

(
αa,g + βa,g Tζa,g ,ηa,g (t) + κza,g

)
.
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Life tables via Markov chain Monte Carlo: Australia II
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