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Capital Calculation in Insurance

Economic

Regulatory

Liquid assets to reserve, as a cushion
against future adverse events.

Internal methodology.

Internal view of risk.

Protect policyholders against events
that may affect solvency.

Supervised methodology.

Industry-wise view of risk.




Research challenges

Challenge 1: Model uncertainty

The design of mathematical models, for deriving capital, raises
questions of appropriatness at many levels (e.g. choice of the risk
factors, choice of the models, .. .).

— How should this uncertainty be quantified?
— How should this uncertainty be accounted?
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Research challenges

Challenge 2: Numerical estimates
Capital calculation can rarely be derived analytically.

< Numerical estimates are used, mainly Monte-Carlo estimates.

< Classical estimation error converges slowly, at best n—1/2
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Replicating Portfolio Approach to Capital Calculation

» We provide a novel dynamic, tractable and path-dependent
construction of the replicating portfolio,

» for monetary risk measures (VaR and ES),

> treat both the real-world and risk-neutral sampling measures.



Outline

Replicating Portolio Theory

Monte-Carlo Analysis

Examples
Geometric Brownian Motion
Put Option in Black—Scholes Model
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Ingredients

Fixed ultimate time horizon T

v

v

(Q, F, Ft,P) with real-world measure P

v

All values and cashflows discounted by some numeraire

v

Corresponding risk-neutral measure Q ~ P



Capital Calculation in Stylized Form
» Terminal loss of asset-liability portfolio Z € L?(Q) at T

» Portfolio is fairly price at t = 0 such that EQ[Z] = 0
» One-year loss is given by L = EQ[Z | Fi]
Goal: solvency capital calculation:
K = plL]

where p is placeholder for either VaR,, or ES,

K Z |
\
ES 4
VaR ‘ : |
1

Replicating Portolio Theory



Problems

Simulating liability cash flows is costly:

> large time horizon T > 40 years

» path dependence:

» embedded options, e.g. minimum rate guarantees
» management & regulatory rules, e.g. policyholder participation
» policyholder behaviour, e.g. lapsing

Nested simulation is computationally extremely costly:

Replicating Portolio Theory

Marktwertanderung tiber ein Jahr

Risikoneutrale Szenarien

t=ult

Zeit
Source: DAV 2015

10/43



Replicating Portfolio Approach

Goal: approximate Z in L?(Q), and thus L in L(P), by a portfolio
invested in m financial instruments

G: = (Git,- - Gme)

that can be efficiently simulated.



Chaos Expansion

This approximation is a computational problem. We can assume
financial market model is complete: find strategy ; such that

T
V—|—/ ¢tht:Z
0

Idea: use “G¢-chaos”, for m = 1:

(o.9]
¢t=¢1(t)+2/ or(st, .-, 5k-1,t) dGs, - dGs,
k=2 0<s1< - <85p 1<t
where ¢1, @2, ... are deterministic functions, and
Ok(S1s -+ -y Sk—1, t)

is obtained by projecting Z on dGg, ---dGs, |



Dynamic Portfolio Strategies for m = 1 Instrument

» Fix partition 0 = tg < t; < --- < ty = T containing t; =1

» Write
AG =Gy Gy,

v

Chaos expansion: portfolio strategies are linear in the running
product of gains AG;

P family of J where J is a subset of {1,..., N}

v

» For any J € P define corresponding product of gains
AGy =[] AG
jeJ

v

Absence of arbitrage: G; is a Q-martingale:

E®[AGy | Fy] =0 forall j <minJ



Dynamic Portfolio Strategies for m = 1 Instrument

» Any choice of ¢ = {¢7 | J € P} € RIPl and initial wealth v
gives self-financing portfolio with value process

VPP =v+ > ¢sAGy.

jep‘tmaxjgt

» Absence of arbitrage implies that Vtv’¢ is a Q-martingale.

» Positions in the instruments G; path-dependent: j = max J

¢gAGy = o7 H AGj x (th—. - thl)
! ——
gain over (t:_,,t]

position



Example: first order portfolio for m =1

» Assume |J| = {j} forall 7 € P
» Obtain first order portfolio with value process

VtV7¢ =V —|— Z ¢JAGJ

tht

for the components ¢; = ¢,



Dynamic Portfolio Strategies for m > 1

AGyy AGy, AGyy

AGyq AG,, AGy;

AG3zq AGs; AG3;
— : : '
to t t, o1 g

Replicating Portolio Theory
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Dynamic Portfolio Strategies for m > 1

Replicating Portolio Theory
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Simplifying Notation (for m = 1)

» Portfolio gains up to one year
A= (DGy | traeg <1)T

» Portfolio gains up beyond one year
B=(AGy | tmaxg >1)"

» Portfolio values of V\"? at t = 0,1, T become

Vel =v, WP=vioiA VI =y olA+oLB.



Replicating Portfolio

» Choose (v, ¢) that solves the L?(Q)-minimization problem

min
(v,¢)eRMIPI

: (P)

V7¢
HZ —Vr 12(Q)

» Corresponding Vtv’¢ is called replicating portfolio (RP)



Formal Solution

Q-martingale property: E2[A] = 0, E[B] = 0, and E?[AB'] = 0.

The formal solution of (P) is thus given by

o ()

with (block-)diagonal Gram matrix

= ( )]

Note: A may be close to singular due to possible strong
correlation between the instruments G;.

» Numerical problems for their inverse.

» Closed form N preferred (e.g. polynomial models)



Capital Approximations

» Denote the residual from the L2(Q)-projection:
e=Z—¢aA—¢iB

» One-year loss:
L=¢pA+E%[e| 7]

» Two approximations for L:
L1 = ¢ A
Ly =¢ ,A+ec=27Z—¢5B
» Two approximations for capital requirement K:

Ki = p[L1] = plpaA]
Kz = plL2] = p[Z — ¢£B]



Industry Standard Static First Order RP

Static first order RP: buy and hold
Formal: N =2, A=G; —Go, B=Gr — Gy, da = ¢ = 1.
» L2(Q)-minimization problem (P):

min

(v.p)eRI+m Z-v-y!(A+B)

2@
» The formal solution is given by
oa=NTE?[(A+B)Z], ¢g=0a V=0
with Gram matrix

N:E@“A+mm+3f]



Outline

Monte-Carlo Analysis
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Simulation-based L2(Q) Projection (P)

» Assume AZ,BZ € [?(Q).
» Simulate n i.i.d. copies of (A, B, Z) under Q:
(AU),BU),ZU)), j=1...n
> We obtain the unbiased estimators
<//>; ol " /AW Z()
(g\B =N n; BU) 70)
» LLN: (&,QZ\B) — (¢a, ¥B) a.s. as n — 0.
» Central limit theorem v/



Monte-Carlo Estimates of Capital Approximations

Estimators of the solvency capital approximation Kj:

—

K1

vV+p [q/b\ATA | g}
@=p[2—@TBIQ}

where G is o-algebra generated by the sample (AU), BU), z0)).

Theorem: Monte—Carlo estimates asymptotically consistent:

K; — K;jas.as n— o



Monte-Carlo Error

The total capital estimation error amounts to

&

< |K-Ki +HK,'—R,-
L2(Q) ~——

approximation error

L2(Q)

Monte-Carlo error

Theorem: For p = ES,,, asymptotically for large n:

< \/T x MCE;
L2(Q) n S~~~

constant

o

Numerical examples show: approximation and Monte-Carlo errors
trade off (— balanced choice of |P| on a case by case basis)
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Sources of Static Incompleteness of the Insurance Market

Sources for incompleteness under static hedging with the
underlying financial instruments (standard approach):

» insurance liability cash flows are nonlinear functions of the
financial instruments

> insurance liability cash flows are path-dependent functions of
the financial instruments

These effects superpose in practice. In the following (simple)
examples, we illustrate these effects.

Parameters: n = 5000, number of MC runs = 1000 (for MC error)

Time partition: quarterly rebalancing: t; = j/4
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Geometric Brownian Motion

» Scalar P-Brownian motion W;
» Constant market price of risk v = 0.1

» m = 1 financial instrument with gains process
Gt = W+t
> Define Q-martingale, with loading A = —0.2,
M; = exp ()\Gt — )‘721“)
and assume
one-year loss: L= M; —1

terminal loss: Z2 = M+ —1

> Risk measure p = ESggo,

» Capital requirements and approximations normalised: K =1



Wiener Chaos Expansion

» Risk-neutral projection measure Q.
» Wiener chaos expansion theory: orthogonal series in L2(Q)

o0

M, —1= Z/ M\ dG,, dG,, - - - dG,
k=1 0<sy < <5 <t

= —t Hy .
kI \/f
————
Hermite poly
» Comparing with
Vit =vi Y 0BGy =vi Y ¢7HjeJAGj

jep“maxJSt jep‘tmaxjgt

suggests that v =0 and
o7 =27, (31)

asymptotically for N — oo.



One-year Loss Approximations: Exact Formulas

We obtain, for t =1,
k
L? = i:l %Hk (G1)

and
13=19+ 0
with

@ = My —1— S0, 2 Tk2H, (%)

for varying degree of path-dependence | 7| < J=1,2...

Examples



Capital Approximations: Exact Approximation Errors

» Industry standard static approximations correspond to J = 1.

» Higher order RPs capture nonlinearities of liability cash flows
significantly better, and for J > 3 extremely well.



Capital Approximations: MC based K;

075

» Semi-exact (green) uses exact integrand (3.1).

» MC based approximations Kj are lower biased due to
time-discretisation of stochastic integral.

s ® MC errors (dashed) moderately increasing in J.
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Loss & RP Trajectories

-0.15

» Loss trajectory L, = EQ[Z | F;] (blue) and quarterly
rebalancing RP (red) in first year

Examples
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Put Option in Black—Scholes Model

» Scalar P-Brownian motion W,
» Constant market price of risk v = 0.1

» m =1 financial instrument with volatility ¢ = 0.2 and gains
process

G = 100 exp (0( Wi 4+ ~t) — "721‘)
» European put option with ATM strike K = 100 and maturity
T =5, denote by P, = EQ[(K — G7)* | F:] time-t price
> Assume
one-year loss: L= P; — Py
terminal loss: Z = (K — G1)" — Py

> Risk measure p = ESggq,

» Capital requirements and approximations normalised: K =1



Capital Approximations: MC based K;

» MC based approximations Kj are accurate for J > 2

» MC errors (dashed) moderately increasing in J.

Examples



Loss & RP Trajectories

——— Loss procsss L,
—@—FRPV,
14 -

» Loss trajectory L, = EQ[Z | F;] (blue) and quarterly
rebalancing RP (red) in first year

Examples



Conclusion

» Dynamic path-dependent RP for capital calculation captures
nonlinear path-dependence of liability cash flows very well.

» VaR and ES capital estimates asymptotically consistent under
P and QQ sampling if chaotic representation property holds.

» Numerical example illustrates that dynamic path-dependent
RP outperforms industry standard static RP.

» Can be readily built into existing projection tools in practice.

» Ongoing: real-world study (jointly with German Insurance
Company)
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